Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mutations in NDUFS1 Cause Metabolic Reprogramming and Disruption of the Electron Transfer.

Identifieur interne : 000225 ( Main/Exploration ); précédent : 000224; suivant : 000226

Mutations in NDUFS1 Cause Metabolic Reprogramming and Disruption of the Electron Transfer.

Auteurs : Yang Ni [Allemagne, Belgique] ; Muhammad A. Hagras [États-Unis] ; Vassiliki Konstantopoulou [Autriche] ; Johannes A. Mayr [Autriche] ; Alexei A. Stuchebrukhov [États-Unis] ; David Meierhofer [Allemagne]

Source :

RBID : pubmed:31557978

Descripteurs français

English descriptors

Abstract

Complex I (CI) is the first enzyme of the mitochondrial respiratory chain and couples the electron transfer with proton pumping. Mutations in genes encoding CI subunits can frequently cause inborn metabolic errors. We applied proteome and metabolome profiling of patient-derived cells harboring pathogenic mutations in two distinct CI genes to elucidate underlying pathomechanisms on the molecular level. Our results indicated that the electron transfer within CI was interrupted in both patients by different mechanisms. We showed that the biallelic mutations in NDUFS1 led to a decreased stability of the entire N-module of CI and disrupted the electron transfer between two iron-sulfur clusters. Strikingly interesting and in contrast to the proteome, metabolome profiling illustrated that the pattern of dysregulated metabolites was almost identical in both patients, such as the inhibitory feedback on the TCA cycle and altered glutathione levels, indicative for reactive oxygen species (ROS) stress. Our findings deciphered pathological mechanisms of CI deficiency to better understand inborn metabolic errors.

DOI: 10.3390/cells8101149
PubMed: 31557978
PubMed Central: PMC6829531


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mutations in
<i>NDUFS1</i>
Cause Metabolic Reprogramming and Disruption of the Electron Transfer.</title>
<author>
<name sortKey="Ni, Yang" sort="Ni, Yang" uniqKey="Ni Y" first="Yang" last="Ni">Yang Ni</name>
<affiliation wicri:level="3">
<nlm:affiliation>Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Present address: Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Present address: Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, 3000 Leuven</wicri:regionArea>
<placeName>
<region type="province" nuts="2">Province du Brabant flamand</region>
<settlement type="city">Louvain</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hagras, Muhammad A" sort="Hagras, Muhammad A" uniqKey="Hagras M" first="Muhammad A" last="Hagras">Muhammad A. Hagras</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, University of California Davis, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of California Davis, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Present address: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Present address: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Konstantopoulou, Vassiliki" sort="Konstantopoulou, Vassiliki" uniqKey="Konstantopoulou V" first="Vassiliki" last="Konstantopoulou">Vassiliki Konstantopoulou</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Vienne (Autriche)</region>
<settlement type="city">Vienne (Autriche)</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mayr, Johannes A" sort="Mayr, Johannes A" uniqKey="Mayr J" first="Johannes A" last="Mayr">Johannes A. Mayr</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg</wicri:regionArea>
<wicri:noRegion>5020 Salzburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stuchebrukhov, Alexei A" sort="Stuchebrukhov, Alexei A" uniqKey="Stuchebrukhov A" first="Alexei A" last="Stuchebrukhov">Alexei A. Stuchebrukhov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, University of California Davis, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of California Davis, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meierhofer, David" sort="Meierhofer, David" uniqKey="Meierhofer D" first="David" last="Meierhofer">David Meierhofer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. meierhof@molgen.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31557978</idno>
<idno type="pmid">31557978</idno>
<idno type="doi">10.3390/cells8101149</idno>
<idno type="pmc">PMC6829531</idno>
<idno type="wicri:Area/Main/Corpus">000219</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000219</idno>
<idno type="wicri:Area/Main/Curation">000219</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000219</idno>
<idno type="wicri:Area/Main/Exploration">000219</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mutations in
<i>NDUFS1</i>
Cause Metabolic Reprogramming and Disruption of the Electron Transfer.</title>
<author>
<name sortKey="Ni, Yang" sort="Ni, Yang" uniqKey="Ni Y" first="Yang" last="Ni">Yang Ni</name>
<affiliation wicri:level="3">
<nlm:affiliation>Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Present address: Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Present address: Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, 3000 Leuven</wicri:regionArea>
<placeName>
<region type="province" nuts="2">Province du Brabant flamand</region>
<settlement type="city">Louvain</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hagras, Muhammad A" sort="Hagras, Muhammad A" uniqKey="Hagras M" first="Muhammad A" last="Hagras">Muhammad A. Hagras</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, University of California Davis, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of California Davis, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Present address: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Present address: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Konstantopoulou, Vassiliki" sort="Konstantopoulou, Vassiliki" uniqKey="Konstantopoulou V" first="Vassiliki" last="Konstantopoulou">Vassiliki Konstantopoulou</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Vienne (Autriche)</region>
<settlement type="city">Vienne (Autriche)</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mayr, Johannes A" sort="Mayr, Johannes A" uniqKey="Mayr J" first="Johannes A" last="Mayr">Johannes A. Mayr</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg</wicri:regionArea>
<wicri:noRegion>5020 Salzburg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stuchebrukhov, Alexei A" sort="Stuchebrukhov, Alexei A" uniqKey="Stuchebrukhov A" first="Alexei A" last="Stuchebrukhov">Alexei A. Stuchebrukhov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, University of California Davis, Davis, CA 95616, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, University of California Davis, Davis, CA 95616</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meierhofer, David" sort="Meierhofer, David" uniqKey="Meierhofer D" first="David" last="Meierhofer">David Meierhofer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. meierhof@molgen.mpg.de.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cells</title>
<idno type="eISSN">2073-4409</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Case-Control Studies (MeSH)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Cellular Reprogramming (genetics)</term>
<term>DNA Mutational Analysis (MeSH)</term>
<term>Electron Transport (genetics)</term>
<term>Energy Metabolism (genetics)</term>
<term>Female (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Infant (MeSH)</term>
<term>Infant, Newborn (MeSH)</term>
<term>Male (MeSH)</term>
<term>Metabolism, Inborn Errors (genetics)</term>
<term>Metabolism, Inborn Errors (metabolism)</term>
<term>Metabolism, Inborn Errors (pathology)</term>
<term>Metabolome (genetics)</term>
<term>Models, Molecular (MeSH)</term>
<term>NADH Dehydrogenase (chemistry)</term>
<term>NADH Dehydrogenase (genetics)</term>
<term>NADH Dehydrogenase (metabolism)</term>
<term>Pregnancy (MeSH)</term>
<term>Primary Cell Culture (MeSH)</term>
<term>Protein Conformation (MeSH)</term>
<term>Proteome (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de mutations d'ADN (MeSH)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Conformation des protéines (MeSH)</term>
<term>Culture de cellules primaires (MeSH)</term>
<term>Erreurs innées du métabolisme (anatomopathologie)</term>
<term>Erreurs innées du métabolisme (génétique)</term>
<term>Erreurs innées du métabolisme (métabolisme)</term>
<term>Femelle (MeSH)</term>
<term>Grossesse (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Métabolisme énergétique (génétique)</term>
<term>Métabolome (génétique)</term>
<term>NADH dehydrogenase (composition chimique)</term>
<term>NADH dehydrogenase (génétique)</term>
<term>NADH dehydrogenase (métabolisme)</term>
<term>Nourrisson (MeSH)</term>
<term>Nouveau-né (MeSH)</term>
<term>Protéome (génétique)</term>
<term>Reprogrammation cellulaire (génétique)</term>
<term>Transport d'électrons (génétique)</term>
<term>Études cas-témoins (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>NADH Dehydrogenase</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Erreurs innées du métabolisme</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>NADH dehydrogenase</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cellular Reprogramming</term>
<term>Electron Transport</term>
<term>Energy Metabolism</term>
<term>Metabolism, Inborn Errors</term>
<term>Metabolome</term>
<term>NADH Dehydrogenase</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Erreurs innées du métabolisme</term>
<term>Métabolisme énergétique</term>
<term>Métabolome</term>
<term>NADH dehydrogenase</term>
<term>Protéome</term>
<term>Reprogrammation cellulaire</term>
<term>Transport d'électrons</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Metabolism, Inborn Errors</term>
<term>NADH Dehydrogenase</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Erreurs innées du métabolisme</term>
<term>NADH dehydrogenase</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Metabolism, Inborn Errors</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Case-Control Studies</term>
<term>Cells, Cultured</term>
<term>DNA Mutational Analysis</term>
<term>Female</term>
<term>Humans</term>
<term>Infant</term>
<term>Infant, Newborn</term>
<term>Male</term>
<term>Models, Molecular</term>
<term>Pregnancy</term>
<term>Primary Cell Culture</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de mutations d'ADN</term>
<term>Cellules cultivées</term>
<term>Conformation des protéines</term>
<term>Culture de cellules primaires</term>
<term>Femelle</term>
<term>Grossesse</term>
<term>Humains</term>
<term>Modèles moléculaires</term>
<term>Mâle</term>
<term>Nourrisson</term>
<term>Nouveau-né</term>
<term>Études cas-témoins</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Complex I (CI) is the first enzyme of the mitochondrial respiratory chain and couples the electron transfer with proton pumping. Mutations in genes encoding CI subunits can frequently cause inborn metabolic errors. We applied proteome and metabolome profiling of patient-derived cells harboring pathogenic mutations in two distinct CI genes to elucidate underlying pathomechanisms on the molecular level. Our results indicated that the electron transfer within CI was interrupted in both patients by different mechanisms. We showed that the biallelic mutations in
<i>NDUFS1</i>
led to a decreased stability of the entire N-module of CI and disrupted the electron transfer between two iron-sulfur clusters. Strikingly interesting and in contrast to the proteome, metabolome profiling illustrated that the pattern of dysregulated metabolites was almost identical in both patients, such as the inhibitory feedback on the TCA cycle and altered glutathione levels, indicative for reactive oxygen species (ROS) stress. Our findings deciphered pathological mechanisms of CI deficiency to better understand inborn metabolic errors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31557978</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2073-4409</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2019</Year>
<Month>09</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Cells</Title>
<ISOAbbreviation>Cells</ISOAbbreviation>
</Journal>
<ArticleTitle>Mutations in
<i>NDUFS1</i>
Cause Metabolic Reprogramming and Disruption of the Electron Transfer.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E1149</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/cells8101149</ELocationID>
<Abstract>
<AbstractText>Complex I (CI) is the first enzyme of the mitochondrial respiratory chain and couples the electron transfer with proton pumping. Mutations in genes encoding CI subunits can frequently cause inborn metabolic errors. We applied proteome and metabolome profiling of patient-derived cells harboring pathogenic mutations in two distinct CI genes to elucidate underlying pathomechanisms on the molecular level. Our results indicated that the electron transfer within CI was interrupted in both patients by different mechanisms. We showed that the biallelic mutations in
<i>NDUFS1</i>
led to a decreased stability of the entire N-module of CI and disrupted the electron transfer between two iron-sulfur clusters. Strikingly interesting and in contrast to the proteome, metabolome profiling illustrated that the pattern of dysregulated metabolites was almost identical in both patients, such as the inhibitory feedback on the TCA cycle and altered glutathione levels, indicative for reactive oxygen species (ROS) stress. Our findings deciphered pathological mechanisms of CI deficiency to better understand inborn metabolic errors.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ni</LastName>
<ForeName>Yang</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Present address: Laboratory of Angiogenesis and Vascular Metabolism, VIB-KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hagras</LastName>
<ForeName>Muhammad A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of California Davis, Davis, CA 95616, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Present address: Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Konstantopoulou</LastName>
<ForeName>Vassiliki</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, 1090 Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mayr</LastName>
<ForeName>Johannes A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stuchebrukhov</LastName>
<ForeName>Alexei A</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, University of California Davis, Davis, CA 95616, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meierhofer</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. meierhof@molgen.mpg.de.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM054052</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R29 GM054052</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Cells</MedlineTA>
<NlmUniqueID>101600052</NlmUniqueID>
<ISSNLinking>2073-4409</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C487793">NDUFS1 protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.6.99.3</RegistryNumber>
<NameOfSubstance UI="D009245">NADH Dehydrogenase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016022" MajorTopicYN="N">Case-Control Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D065150" MajorTopicYN="N">Cellular Reprogramming</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004252" MajorTopicYN="N">DNA Mutational Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004734" MajorTopicYN="N">Energy Metabolism</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007223" MajorTopicYN="N">Infant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007231" MajorTopicYN="N">Infant, Newborn</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008661" MajorTopicYN="N">Metabolism, Inborn Errors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055442" MajorTopicYN="N">Metabolome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009245" MajorTopicYN="N">NADH Dehydrogenase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011247" MajorTopicYN="N">Pregnancy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061251" MajorTopicYN="N">Primary Cell Culture</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">complex I (CI) deficiency</Keyword>
<Keyword MajorTopicYN="Y">electron tunneling (ET)</Keyword>
<Keyword MajorTopicYN="Y">metabolome and proteome profiling</Keyword>
<Keyword MajorTopicYN="Y">reactive oxygen species (ROS)</Keyword>
<Keyword MajorTopicYN="Y">respirasome assembly</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>09</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31557978</ArticleId>
<ArticleId IdType="pii">cells8101149</ArticleId>
<ArticleId IdType="doi">10.3390/cells8101149</ArticleId>
<ArticleId IdType="pmc">PMC6829531</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 16;103(20):7607-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16682634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2016 Oct 1;32(19):2936-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27318206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1987 Jul 15;166(2):287-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3111848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2015 Nov 15;24(22):6350-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26345448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2015 Jan 2;14(1):224-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25361611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Jan 2;347(6217):44-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25554780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2007 Jun;7(13):2189-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17533645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 1984 Oct;16(4):481-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6093682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Cell. 2013 Aug;4(8):582-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23828195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurogenetics. 2014 Aug;15(3):161-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24952175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2015 Sep;16(9):530-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26281784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2008 May;49(5):1137-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carcinogenesis. 2004 Jun;25(6):1005-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14764459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drugs. 2016 May;76(7):805-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27071925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mutat. 2003 Jun;21(6):582-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12754703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 27;281(43):32724-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16950771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2015 Jul 7;22(1):31-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26118927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Aug 27;279(35):36349-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2001 Jun;68(6):1344-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11349233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tex Heart Inst J. 2013;40(4):385-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24082366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Genet. 2003 Dec;40(12):896-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14684687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biochem. 2004 Jul;262(1-2):127-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15532717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2015 Aug 4;22(2):207-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26166745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mitochondrion. 2017 Jul;35:97-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28576558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2016 May;15(5):1526-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26852163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1980 Aug 25;117 Suppl:K73-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6998729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 6;279(6):4127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14625276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2017 Jul 5;20(1):264-278</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28683319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mitochondrion. 2007 Jul;7(4):260-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17317336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2014 Mar;11(3):319-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24487582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncol Lett. 2012 Dec;4(6):1247-1253</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23205122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Feb 28;494(7438):443-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23417064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Apr 17;19(8):1777-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10775262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Mar 25;47(12):3964-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18307315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1450-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15064371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glia. 2014 Apr;62(4):514-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24446254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Nov 9;107(45):19157-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20974925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain. 2003 Aug;126(Pt 8):1905-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2017 Apr 4;25(4):765-776</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28380371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Dec 1;167(6):1598-1609.e10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27912063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1988 Nov 18;55(4):601-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3180221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Nov;1857(11):1777-1785</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27555334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JIMD Rep. 2015;19:95-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25681084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2018 Sep 4;28(3):525-531.e4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29937372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2012 Feb 10;90(2):314-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22284826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2013;1033:363-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23996189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 2005 Oct;58(4):544-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16044424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocr Rev. 2010 Apr;31(2):194-223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20007326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2003 Feb;2(2):117-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12644575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Feb 25;331(6158):717-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2830540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Jan 1;417(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16199517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Essays Biochem. 2018 Jul 20;62(3):399-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29950319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Res. 2005 Mar-Apr;25(2A):965-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15868935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2007 Nov;28(21):3811-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17960833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Oct;1807(10):1364-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21565159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Neuropathol. 2003 Mar;105(3):245-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12557011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Neurol Scand. 1985 Jul;72(1):36-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4050316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2009 Jun;1787(6):574-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19366614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2005 Aug;5(13):3537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16041671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Oct 20;538(7625):406-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27595392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Nov 18;291(47):24657-24675</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27672209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Mar 24;292(12):4987-4995</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28174301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Ther. 2013 Oct;7(5):172-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24270380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Sep 21;537(7622):639-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27654917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2004 Dec 6;1659(2-3):115-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15576042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Aug 26;280(34):30129-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15985426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Cancer. 2010 Apr 19;10:149</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Jul;1857(7):872-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26721206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2003 Jul 10;1604(3):135-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Mar 10;48(9):2053-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19220002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2015 Aug;65:91-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26024641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cardiol. 2013 Sep 1;167(5):e143-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23628297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jul 29;309(5735):771-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16051796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Dec 4;350(6265):1208-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26785480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Metab. 2009 Apr;96(4):196-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19167255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Nov 21;32(4):529-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19026783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2018 Jun 22;293(25):9869-9879</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29743240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Metab. 2006 Sep-Oct;89(1-2):3-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16854608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2016 Oct;160(4):205-215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27118783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inherit Metab Dis. 2015 Jul;38(4):629-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25778941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Aug 18;536(7616):354-358</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27509854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Oct 12;276(41):37861-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11483615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Hum Genet. 2002 Feb;10(2):141-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11938446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Pharmacol. 2014 Jul 01;5:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25024695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1988 Dec 9;242(4884):1427-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3201231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jun 18;9(6):e100001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24941115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Sep 29;537(7622):644-648</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27654913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W13-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21558174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2007 Aug;159(2):238-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2017 Jan;241(2):236-250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27659608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Feb;1797(2):113-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19761752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Jun;27(12):4228-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17438127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Genet. 2012 Sep;49(9):578-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22972949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24753421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2017 Jan 10;25(1):128-139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27720676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Dec 22;581(30):5803-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18037377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Sep 7;170(6):1247-1257.e12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28844695</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Autriche</li>
<li>Belgique</li>
<li>États-Unis</li>
</country>
<region>
<li>Berlin</li>
<li>Californie</li>
<li>Massachusetts</li>
<li>Province du Brabant flamand</li>
<li>Vienne (Autriche)</li>
</region>
<settlement>
<li>Berlin</li>
<li>Louvain</li>
<li>Vienne (Autriche)</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Berlin">
<name sortKey="Ni, Yang" sort="Ni, Yang" uniqKey="Ni Y" first="Yang" last="Ni">Yang Ni</name>
</region>
<name sortKey="Meierhofer, David" sort="Meierhofer, David" uniqKey="Meierhofer D" first="David" last="Meierhofer">David Meierhofer</name>
<name sortKey="Ni, Yang" sort="Ni, Yang" uniqKey="Ni Y" first="Yang" last="Ni">Yang Ni</name>
</country>
<country name="Belgique">
<region name="Province du Brabant flamand">
<name sortKey="Ni, Yang" sort="Ni, Yang" uniqKey="Ni Y" first="Yang" last="Ni">Yang Ni</name>
</region>
</country>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Hagras, Muhammad A" sort="Hagras, Muhammad A" uniqKey="Hagras M" first="Muhammad A" last="Hagras">Muhammad A. Hagras</name>
</region>
<name sortKey="Hagras, Muhammad A" sort="Hagras, Muhammad A" uniqKey="Hagras M" first="Muhammad A" last="Hagras">Muhammad A. Hagras</name>
<name sortKey="Stuchebrukhov, Alexei A" sort="Stuchebrukhov, Alexei A" uniqKey="Stuchebrukhov A" first="Alexei A" last="Stuchebrukhov">Alexei A. Stuchebrukhov</name>
</country>
<country name="Autriche">
<region name="Vienne (Autriche)">
<name sortKey="Konstantopoulou, Vassiliki" sort="Konstantopoulou, Vassiliki" uniqKey="Konstantopoulou V" first="Vassiliki" last="Konstantopoulou">Vassiliki Konstantopoulou</name>
</region>
<name sortKey="Mayr, Johannes A" sort="Mayr, Johannes A" uniqKey="Mayr J" first="Johannes A" last="Mayr">Johannes A. Mayr</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000225 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000225 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31557978
   |texte=   Mutations in NDUFS1 Cause Metabolic Reprogramming and Disruption of the Electron Transfer.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31557978" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020